Contenido y distribución de elementos mayoritarios y trazas en aguas subterráneas someras de la Pampa Arenosa, Buenos Aires, Argentina

Griselda Galindo¹, J.J. Marquez², C.M. Sainato³, J.L. Fernandez Turiel³ y F. Ruggieri³

¹Departamento de ciencias geológicas, Facultad de Ciencias Exactas y Naturales – (UBA), INTA Guallaties 2180 - CP: 1428. CABA, Buenos Aires, Argentina.
²Cátedra de Física, Facultad de Agronomía – (UBA). CABA, Buenos Aires, Argentina.
³Inst. Ciencia de la Tierra “Jaume Almera” – CSIC, Barcelona
Mail de contacto: grigace@gl.fcen.uba.ar

RESUMEN
Se evaluaron el contenido y distribución de elementos mayoritarios y trazas, de las aguas subterráneas, en la Pampa Arenosa, al oeste de la provincia de Buenos Aires, relacionándolas con las diferentes actividades. El paisaje fue modelado por el viento desarrollando dunas de dirección NNW. El agua subterránea fue muestrada en treinta pozos, se midió temperatura, pH, y la conductividad eléctrica in situ. Los elementos analizados: Ca, Mg, Na, K, Si, S, B, P, Fe y trazas: Al, As, Ba, Br, Cl, Cu, Li, Mn y Zn. La morfología y la hidrogeología de la zona de estudio influyen en la hidrodinámica e hidroquímica del agua, que demuestran variabilidad en su composición. Los iones de Na, Cl, SO₄, Fe, Mn, Ni y As presentan valores altos. El valor del Na, Cl y el As exceden el umbral fijado por la OMS.

Palabras clave: Hidroquímica, llanura pampeana, elementos trazas.

ABSTRACT
The content and distribution of major and trace elements of groundwater were evaluated at the West of Buenos Aires Province, Pampa Arenosa, relating them with the different activities. The landscape was modeled by the wind developing dunes with NNW strike. Groundwater was sampled at thirty wells. Temperature, pH, and Electrical Conductivity were measured in situ. The elements analyzed: Ca, Mg, Na, K, Si, S, B, P, Fe and trace elements: Al, As, Ba, Br, Cl, Cu, Li, Mn, and Zn. The morphology and hydrogeology of the study zone influence the hydrodynamics and hydrochemistry of water showing variability in its composition. Only the ions of Na, Cl, SO₄, Fe, Mn, Ni and As have high values. The value of Na, Cl and As exceeds the threshold set by WHO.

Key words: hydrochemistry, Pampean plain, trace elements.

Introducción
La zona de estudio, se ubica dentro del marco geológico en la región de la Llanura Chaco Pampeana de la provincia de Buenos Aires, específicamente en el área noroccidental, o Pampa Arenosa. El paisaje ha sido modelado por el viento, dunas aisladas en media luna. Campos de arena eólica, y dunas bordeando bajos inundables. Los mayores conflictos son de tipo hidrológico, se trata de una comarca de características arrecifes.

Tricas (1983) propone la denominación de unidades hidro geomorfológicas, caracterizadas por los distintos aspectos de la dinámica del agua, tanto en superície como debajo de ella, en los suelos y en los acuíferos.

El comportamiento hídrico señala el predominio de la transferencia vertical de agua (precipitación, evaporación e infiltración) sobre la transferencia horizontal. Desde 1970 al 2002, se ha detectado un incremento promedio que supera los 150 mm/año en la tasa anual de precipitaciones medias, estando cerca de los 900 a 950 mm/año (Kuuse et al., 2005).

La situación hídrica tiene efectos directos sobre el sistema socioeconómico de la región, destacándose que los impactos naturales más notables son consecuentes con la alternancia de periodos con excesos de agua (mudanzas) y de periodos con déficit de agua (seca).
Fig. 1. Localización de la zona de estudio.

Por otra parte, esta alternancia climática, coincide directamente en la calidad de las aguas subterráneas, motivo por el cual se encierra este estudio, midiendo el contenido y distribución de los componentes químicos mayoritarios y trazas en las aguas someras en el Partido de Trenque Lauquen, correspondiente a la Hoja Nueva Castilla, escala 1:50 000, en una superficie del orden de los 6099,53 ha, al sur oeste de la Pampa Arenosa. (Fig. 1).

Según Hurtado, et al., 2005, los suelos de la Pampa Arenosa, "muesran características muy esenciales en cuanto a sus geógrafías actuales. Resulta posible realizar subdivisiones dentro de la Pampa Arenosa. Cada una de estas delimitaciones, posee particularidades específicas que le otorgan un funcionamiento propio a los aguas y a la formación de suelos."

En el sector sur de la Pampa Arenosa, conocidos como médanos paraústicos, se originan por los vientos, encadenándose unos con otros, dando lugar a un paisaje muy particular que se manifiestan en algunos partidos, en el sector sur de Trenque Lauquen. Consecuentemente estas geógrafías producen una captación de las precipitaciones en los sectores convencionales de las medianías, con muy pocas posibilidades de intercomunicarse con cubetas aledañas y ser evacuadas por la muy escasa pendiente de la región.

"La sumatoria de las depresiones abieras los excedentes hídricos regionales, cuya eliminación sólo es posible por evapotranspiración, dado que la percolación hacia la profundidad está severamente limitada por la presencia de la capa freática, muy cercana a la superficie. Los médanos paraústicos son posteriores a los lenzafundos, superponiéndose a ellos en la parte sur y complicando la circulación del agua en los sectores interdunares" (Hurtado, et al., 2005).

En sitios con relieve plano o lento, aparecen suelos con escaso espesor de manto arenoso sobre el sedimento de baja permeabilidad. A este sedimento se lo conoce con el nombre de horizonte enterrado o thapio, ya que fue desarrollado en un clima distinto (paecoclima) que el actual. En estos suelos la capa freática suele estar cerca de la superficie, lo cual genera problemas de salinización y exceso de sodio intercambiable en los suelos. Es bien conocido en la zona la alta mineralización de las aguas subterráneas, y las secuelas que deja su ascenso capilar y posterior precipitación en superficie por efecto evaporativo del agua.

Los suelos en este sector de estudio, presentan una secuencia de horizontes A–A+C con distinta profundidad del horizonte A que es mólculo, estos suelos son clasificados como Hapludoles énticos, sin embargo en algunos sectores especialmente en los bajos los suelos se clasifican como Hapludoles típicos con una secuencia A–Dw–C. Para ambos casos ambos suelos son de textura franca arenosa y no presentan síntomas de hídromorfológico. (Heredía, et al., 2009)

En trabajos previos de Heredia et al, 2009, el contenido de humedad actual del suelo sigue la misma tendencia que la porosidad del suelo, aumenta cuando aumenta el contenido de carbono oxidable, variando la misma entre 30 % en superficie a 7 % en profundidad.

"Dentro de los cationes intercambiables, el calcio es el ion dominante, estando el complejo saturado en iones alcalinos terrosos y no en sodio. Bajo actividad de fósforo, aumentan los valores de Ca, Na y K no así el de Mg. Los suelos a pesar del incremento de Na, no llegan a ser sodícos en ningún caso" (Heredía et al., 2009).

El aporte de estiércol que realizan los animales incrementa el nivel de carbono oxidable, pH, capacidad de intercambio catiónico, sales y cationes en la superficie del suelo, pero su efecto no es significativo en profundidad. El índice de atenuación de estos suelos es bajo. (Heredía et al., 2009).

Hidrogeología

Los médanos son buenos sectores de infiltración preferencial de las lluvias y en la sección superior de la unidad subyacente,
Pampeano, existen lentes de agua dulce que son las únicas fuentes de provisión de agua potable. La dificultad que presentan estos medios en forma parabólica y la baja pendiente hace el escarmiento superficial limitado por la baja inclinación topográfica.

El Postpampeano, incluye una serie de unidades geológicas de diferente extensión, origen y características, que se desarrollan a partir del Holoceno.

La unidad geológica que representa mayor continuidad areal es el Médano Invacor, formadas por arenas finas y limos arenosos de tonalidad castaña y origen eólico. Tiene escasa manifestación vertical, con el mayor espesor registrado hasta el presente en Saliquelú y Trequen Lauquen con 20 m, disminuyendo hacia el este, esta unidad es la de mayor interés hidrogeológico, pues a los medios se asocian los lentes de agua dulce única fuente de aporte de agua de las ciudades más importantes de la región. También le corresponde la presencia de los limos-arcillosos del fondo de las depresiones, cubetas de deflación, especialmente de las lagunas permanentes.

La unidad mediana ejerce un notable control en el comportamiento hidrogeológico, tanto superficial como subterráneo. La elevada permeabilidad de los médanos favorece a la infiltración y por ende la recarga, lo que derrina agua en lentes de agua fréatica de baja salinidad, vinculadas a cuerpos medanosanos, como en Marlauquén, y otras localidades. Estas lentes de agua dulce, que no sólo se emplazan en los médanos, sino también en la sección superior de la Fm subyacente, Pampeano.

El Pampeano subyace al Postpampeano. Con características limíticas loessoides, alojando al aislado en un acuífero semisolitaire, con limos arenosos a arcillas limosas en su base que sirven de techo acuífero a la siguiente unidad acuífera. En la mayor parte de la región se trata de la Fm Araucano, portadora de aguas salobres y de escaso rendimiento (González, 2005).

El Pampeano presenta continuidad en toda el área de estudio, con variaciones de espesor poco significativas. Hidrogeológicamente el Pampeano actúa como acuífero de media productividad siendo, menos permeable que el Postpampeano arenoso. La intercalación de algunos niveles arcillosos de poco espesor, le otorgan un confinamiento parcial que se incrementa en profundidad. La salinidad, manifiesta una acentuada zonación lateral y vertical. La primera debido al flujo y a la variación litológica de los sedimentos portadores y la restante, por diferencia en la densidad del agua y por cambios litológicos. Por ello, la sección superior es la de menor contenido salino, fundamentalmente cuando está cubierta por médanos, debido a la recarga proveniente de los mismos y en estos casos se le aprovecha para consumo humano, en ciudades como Y de Julio o Trequen Lauquen, es esta última junto con la unidad superior (Fm Jurín).

La composición mineralógica del Pampeano, con algunos horizontes donde abunda el vidrio volcánico, particularmente asociados a sedimentos coláceos, hace que el agua subterránea pueda presentar altos contenidos de cloruros y en algunos casos de arsénico.

El Araucano y Arenas Puelches, son dos unidades geológicas sincrónicas, pero de características sedimentológicas y comportamiento hidrogeológico diferentes. El Araucano se ubica en el sublecho de la mayor parte del área estudiada. Está integrado por areniscas arcillosas,圣诞, con cemento calcáreo y abundante yeso, con intercalaciones de arcillas de tonalidades rojas. De origen lagunar, pertenece al Plioceno (Auge et al. 2004). Se ubica entre el Pampeano y la Fm Paraná, conformando, tanto su base como techo, superficies de discordancia erosiva.

Hidrogeológicamente se comporta como acuífero de baja productividad. El incremento salino en profundidad, su constitución arcillosa y la presencia de abundante yeso, hacen que el agua contenida en esta unidad tenga elevada salinidad, mayor a 3 gr y sea del tipo sulfatado, lo que limita su aprovechamiento a la provisión para el ganado (Auge, 2004).

Materiales y Métodos

Se muestrearon 30 perforaciones del acuífero libre (10 a 20 m de profundidad), los datos fueron georeferenciados. Se midieron sus temperatura, pH y conductividad. En laboratorio se determinaron los parámetros mayoritarios mediante espectrometría de emisión óptica con fuente de plasma acoplado por inducción (ICP-OES): Ca, Mg, Na, K, Si, Al, P, y Fe mientras que los elementos traza se analizaron con espectrometría de masas (ICP-MS) con fuente de plasma acoplado por inducción: Al, As, Ba, Br, Cr, Cu, Li, Mn, Zn. Considerando las características fisicoquímicas de las muestras, la concentración de Br, Cl y S se expresan como Br⁻, Cl⁻ y SO₄²⁻ respectivamente. El método empleado está descrito en Fernández-Tulid et al. (1995, 2000). La variabilidad de la composición hidroquímica de las aguas subterráneas se analizó con el diagrama de Piper. Se utilizó estadística descriptiva.
Las interacciones agua-suelo y dirección de las aguas subterráneas se determinaron por las relaciones hidrogeológicas, dado que la región es de características arreces, son medianas que interviene fuertemente en el comportamiento hidrogeológico, tanto superficial como subterráneo, y la presencia de lentes de agua dulce. Se eligieron las relaciones rCaMg, rCaSO4 y rNaCl, en función de la composición del agua subterránea y litología con las que tuvieron contacto. Se realizó un perfil hidroquímico de dirección SO-NE (A-A'), coincidente con la pendiente topográfica, con una longitud del orden de los 8744 m. (Fig. 2).

Para evaluar la posibilidad de uso de las aguas subterráneas para riego de los cultivos sin producir excesiva salinización o petróleo de sodificación, se utilizaron las normas del U.S. Salinity Soil Laboratory of Riverside.

Para el mapeo de la información microquímica, se realizó una base de datos georreferenciada con los resultados de los análisis médicos en campo y analizados en laboratorio, posteriormente mediante la implementación del software SURFER 8, el método de interpolación implementado fue kriging, con el que realizaron diferentes mapas de isocontorno para los elementos representativos.

Resultados y discusión

La mayoría de las muestras define una composición bicarbonatada sódica, le sigue el grupo de características cloruradas sódicas, otro clorurada cálcica y finalmente un pequeño grupo se define como bicarbonatadas cálcicas. (Fig. 3).

El catión dominante es el sodio; el potasio tiene trascendencia y el calcio domina sobre el magnesio. El origen del cloro se debe a las concreciones cálcicas, del sedimento eólico en forma de aros.

En cuanto a los aniones, domina el bicarbonato, seguido del cloro, y finalmente el sulfato. Las aguas bicarbonatadas sódicas son perjudiciales para el riego ya que fían el sodio en el terreno, creando un medio alcalino.

En la Tabla 1, se exponen los valores estadísticos de los parámetros analizados, con los límites permitidos para consumo humano. Siendo en la mayoría de los casos, la dureza, el

![Diagrama de Piper](image)

Na, Cl, SO₄, Fe, Mn, Ni y As los que superan el límite permitido.

El pH varía de entre 7 a 8. La CE presenta una máxima de 6,89 μS/cm y una mediana de 2,40 μS/cm, convirtiéndolas en aguas de tipo salobres. Los valores de dureza indican aptitud para el consumo humano, sin embargo hay que tener en cuenta que valores superiores a 300 mg/l los convierte en perjudiciales para los equipos de lavado de ropa y para otros usos, debido a las incrustaciones que provocan. Síendo el 63 % de las muestras que superan esta valor.

Al graficar los valores para ver la relación de adsorción de sodio (RA3), lo cual genera problemas de salinización y exceso de sodio.
intercambiable en los suelos, los valores obtenidos indican un mayor problema debido a la salinización de las aguas más que al sodio. Variando de $C_{2}S_{2}$ a $C_{2}S_{4}$.

Esta característica está asociada a procesos naturales de sodificación, por el intercambio ionic de Na-Ca, siendo la evapotranspiración responsable de la salinización. Los procesos de intercambio Na-Ca tijan el cálculo del yeso natural, y de los nódulos de yesca, del acuífero Pampeano, en la fracción arenosa y transfieren al agua el sedo previamente fijado en las arcillas, así como el suelo del yasa. Por otra parte, estos procesos de salinización incrementan las concentraciones en el agua del Mg, Cl y elementos trazas tales como Br, Li y, en menor medida del B.

La SiO$_2$ presenta una mediana del orden de 27,09 mg/l, son valores típicos de la llanura pampeana (Gañán et al, 2006), asociados a aguas bicarbonatadas y sodicas.

El 83,33 % de los pozos supera el contenido de Cl. Considerando además los altos valores de Br, cuya mediana es del orden de los 1366 mg/l. Por otro lado el Boro es otro elemento a tener en cuenta referido a la aptitud para consumo humano (500 mg/l), como para la agricultura, que son perjudiciales, el valor máximo hallado es del orden de los 5129 mg/l y su mediana es de 940 mg/l.

Los SO$_4$ están en exceso en el 33 % de las muestras, superando el límite permitido (400 mg/l del CAA).

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Unidad</th>
<th>WHO</th>
<th>CAA</th>
<th>Min.</th>
<th>Máx.</th>
<th>Mediana</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp</td>
<td>ºC</td>
<td>0,00</td>
<td>24,0</td>
<td>18,5</td>
<td>6,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>6,5-8,5</td>
<td></td>
<td>7,00</td>
<td>8,9</td>
<td>7,5</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td>Cond.</td>
<td>µS/cm</td>
<td>0,00</td>
<td>5,0</td>
<td>2,4</td>
<td>2,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dureza</td>
<td>mg/l</td>
<td>400</td>
<td>1529</td>
<td>515,5</td>
<td>378,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAS</td>
<td>µg/l</td>
<td>1,96</td>
<td>49,3</td>
<td>13,9</td>
<td>12,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td>mg/l</td>
<td>6,05</td>
<td>238,5</td>
<td>82,7</td>
<td>65,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td>mg/l</td>
<td>12,56</td>
<td>227,3</td>
<td>66,3</td>
<td>58,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>mg/l</td>
<td>95,94</td>
<td>1661,7</td>
<td>604,7</td>
<td>612,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>mg/l</td>
<td>7,70</td>
<td>67,3</td>
<td>20,0</td>
<td>14,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>mg/l</td>
<td>21,68</td>
<td>30,3</td>
<td>27,1</td>
<td>2,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>mg/l</td>
<td>256</td>
<td>350</td>
<td>154,5</td>
<td>1279,5</td>
<td>527,0</td>
<td>407,7</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>mg/l</td>
<td>250</td>
<td>400</td>
<td>14,32</td>
<td>1527,0</td>
<td>202,0</td>
<td>453,7</td>
</tr>
<tr>
<td>HCO$_3$</td>
<td>mg/l</td>
<td></td>
<td>191,25</td>
<td>2969,2</td>
<td>768,2</td>
<td>805,4</td>
<td></td>
</tr>
<tr>
<td>NO$_3$</td>
<td>mg/l</td>
<td>45</td>
<td>332,0</td>
<td>61,5</td>
<td>96,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td>µg/l</td>
<td>16,36</td>
<td>63,7</td>
<td>38,2</td>
<td>14,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>µg/l</td>
<td>500</td>
<td>500</td>
<td>94,70</td>
<td>5128,3</td>
<td>340,0</td>
<td>1194,2</td>
</tr>
<tr>
<td>Al</td>
<td>µg/l</td>
<td>200</td>
<td>200</td>
<td>5,57</td>
<td>1041,3</td>
<td>71,1</td>
<td>250,5</td>
</tr>
<tr>
<td>P</td>
<td>µg/l</td>
<td>14,97</td>
<td>2427,7</td>
<td>70,1</td>
<td>466,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>µg/l</td>
<td>300</td>
<td>300</td>
<td>46,67</td>
<td>876,1</td>
<td>216,8</td>
<td>218,4</td>
</tr>
<tr>
<td>Mn</td>
<td>µg/l</td>
<td>500</td>
<td>100</td>
<td>1,67</td>
<td>4749,7</td>
<td>5,6</td>
<td>865,2</td>
</tr>
<tr>
<td>Ni</td>
<td>µg/l</td>
<td>20</td>
<td>20</td>
<td>0,67</td>
<td>36,3</td>
<td>2,3</td>
<td>6,8</td>
</tr>
<tr>
<td>Cu</td>
<td>µg/l</td>
<td>2000</td>
<td>1000</td>
<td>4,32</td>
<td>395,4</td>
<td>9,5</td>
<td>68,5</td>
</tr>
<tr>
<td>Zn</td>
<td>µg/l</td>
<td>5000</td>
<td>5000</td>
<td>9,89</td>
<td>2453,8</td>
<td>32,4</td>
<td>449,0</td>
</tr>
<tr>
<td>As</td>
<td>µg/l</td>
<td>10</td>
<td>10</td>
<td>4,34</td>
<td>290,3</td>
<td>12,1</td>
<td>61,2</td>
</tr>
<tr>
<td>Br</td>
<td>µg/l</td>
<td>141,1</td>
<td>5438,5</td>
<td>1356,0</td>
<td>1702,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Table 1. Parámetros utilizados en el análisis de las aguas subterráneas |

La influencia antropica está vinculada en la mayoría de los casos a situaciones puntuales, como el de los NO$_3$, el 80 % de los pozos contiene nitratos, estas concentraciones están asociadas a las actividades antropicas de características ganaderas y asentamiento humano.

El Fe supera en el 30 % de las muestras el límite admisible para consumo humano. La WHO recomienda niveles de <0,3 mg/l. Proveniente de la composición del suelo, al igual que el Mn.

Se analizaron los valores de Zn, Ni y Cu, como micronutrientes, de importancia para la nutrición animal. Los valores de Zn y Cu están dentro de los valores normales. Se explica su presencia en las aguas subterráneas debido a que el sedimento loésico está integrado por
anfítolitos y piroxenos entre otros minerales. El Ni sólo ocurre en una muestra, posiblemente influenciadas por factores ambientales, como el pH y presencia de materia orgánica. Los valores máximos encontrados de Ni se ubicaron en el sector SE del área de estudio, entre 36,9 y 15,1 µg/l, siendo la mediana de 2,8 µg/l.

Los valores de sodio exceden el 80 % de las muestras, con un mediana de 604,76 mg/l. Concentraciones elevadas en sodio son perjudiciales a las plantas al reducir la permeabilidad del suelo; son especialmente nocivas si las concentraciones de Ca y Mg son bajas.

Dada las características del ríosuro, se mantiene fuertemente en la mayoría de los suelos y no se infiltra fácilmente, los valores altos presentan mínimos de 14 µg/l, máximos de 2427,27 µg/l, esto corresponde a la muestra m1, donde existe un fueilto con más de 7 años de actividad, sobre suelos arenosos, y en algunos casos con niveles freáticos poco profundos.

El 57 % de los pozos pasan el nivel guía admisible en As, mostrando una correlación negativa con la silice, en los mapas de isotonos, estas características son típicas de la llanura pampeana. (Gallardo et al. 1999). El origen del arsenico es natural y está relacionado con el vulcanismo de la cordillera de los Andes, siendo el mecanismo dominante el hidrólico.

También incide en la calidad del agua subterránea el contenido de Br, con valores de 1356 µg/l a 5438 µg/l, aumentando los valores de salinidad.

La relación Ca/Mg va aumentando en dirección noroeste, o sea que las aguas se van enriqueciendo en Ca, hasta 5,5 en las zonas más bajas topográficamente. En la relación Ca/SO4, se encuentran más elevadas en los sectores de mayor topografía, evidenciando restos de material vesáfico donde el agua toma contacto con el mismo. En la relación Na/Cl también se observa el aumento en dirección noroeste de la zona de estudio, que en muy pocos casos sobre pasa a 1 (Figs. 3 y 4).

La presencia de loess de las dunas elípticas constituidas por silice carbonato de calcio y las arcillas de los sedimentos subyacentes, le imprimen al agua las características bicarbonatadas sódicas y en menor proporción bicarbonatadas cálcicas.

Como resultado, ríos el calcio del yacimiento natural existente (a del calcio natural procedente de los nódulos y cañas calcáreas -tosca- del acuífero Pampeano) en la fracción arcillosa (esmecía y en menor medida illita) y
sugiere una especial atención por parte de los gestores o responsables del recurso.

Los suelos no funcionan como un buen amortiguador de los contaminantes, por lo que se recomienda precaución en el manejo tanto de efluentes como fluidos con exposición directa al suelo.

Estos indicadores serán de gran utilidad tanto a los productores para sus tareas de planificación y operatividad, como para la evaluación y planificación de obras hidráulicas.

Se debe preservar la aptitud del recurso que es sumamente frágil, y por ende fácilmente degradable si se emplean prácticas de explotación que no contemplan el necesario equilibrio entre los ingresos mediante la recarga de lluvia y los egresos debido a la explotación.

Referencias